Search results for "Comparison principle"

showing 10 items of 13 documents

Equivalence of viscosity and weak solutions for a $p$-parabolic equation

2019

AbstractWe study the relationship of viscosity and weak solutions to the equation $$\begin{aligned} \smash {\partial _{t}u-\varDelta _{p}u=f(Du)}, \end{aligned}$$ ∂ t u - Δ p u = f ( D u ) , where $$p>1$$ p > 1 and $$f\in C({\mathbb {R}}^{N})$$ f ∈ C ( R N ) satisfies suitable assumptions. Our main result is that bounded viscosity supersolutions coincide with bounded lower semicontinuous weak supersolutions. Moreover, we prove the lower semicontinuity of weak supersolutions when $$p\ge 2$$ p ≥ 2 .

viscosity solutionosittaisdifferentiaaliyhtälötPure mathematics35K92 35J60 35D40 35D30 35B51Mathematics::Analysis of PDEscomparison principleweak solutionparabolic p-LaplacianViscosityMathematics (miscellaneous)Mathematics - Analysis of PDEsBounded functionFOS: Mathematicsgradient termEquivalence (measure theory)MathematicsAnalysis of PDEs (math.AP)
researchProduct

Perron's method for the porous medium equation

2016

O. Perron introduced his celebrated method for the Dirichlet problem for harmonic functions in 1923. The method produces two solution candidates for given boundary values, an upper solution and a lower solution. A central issue is then to determine when the two solutions are actually the same function. The classical result in this direction is Wiener’s resolutivity theorem: the upper and lower solutions coincide for all continuous boundary values. We discuss the resolutivity theorem and the related notions for the porous medium equation ut −∆u = 0

Dirichlet problemApplied MathematicsGeneral Mathematicsta111010102 general mathematicsMathematical analysiscomparison principlePerron methodFunction (mathematics)Primary 35K55 Secondary 35K65 35K20 31C45obstaclesPorous medium equation01 natural sciencesBoundary values010101 applied mathematicsMathematics - Analysis of PDEsHarmonic functionFOS: Mathematics0101 mathematicsPorous mediumPerron methodAnalysis of PDEs (math.AP)Mathematics
researchProduct

Multiple solutions with sign information for a (p,2)-equation with combined nonlinearities

2020

We consider a parametric nonlinear Dirichlet problem driven by the sum of a p-Laplacian and of a Laplacian (a (p,2)-equation) and with a reaction which has the competing effects of two distinct nonlinearities. A parametric term which is (p−1)-superlinear (convex term) and a perturbation which is (p−1)-sublinear (concave term). First we show that for all small values of the parameter the problem has at least five nontrivial smooth solutions, all with sign information. Then by strengthening the regularity of the two nonlinearities we produce two more nodal solutions, for a total of seven nontrivial smooth solutions all with sign informations. Our proofs use critical point theory, critical gro…

Settore MAT/05 - Analisi MatematicaConstant sign and nodal solutionFlow invarianceConvex–concave problemStrong comparison principleCritical groupNonlinear regularity
researchProduct

A weak comparison principle for solutions of very degenerate elliptic equations

2012

We prove a comparison principle for weak solutions of elliptic quasilinear equations in divergence form whose ellipticity constants degenerate at every point where \(\nabla u\in K\), where \(K\subset \mathbb{R }^N\) is a Borel set containing the origin.

Discrete mathematicsPure mathematicsApplied MathematicsDegenerate energy levelsWeak comparison principleMathematics::Analysis of PDEs35B51 35J70 35D30 49K20Mathematics - Analysis of PDEsSettore MAT/05 - Analisi Matematicavery degenerate elliptic equationsFOS: MathematicsPoint (geometry)Nabla symbolBorel setDivergence (statistics)Analysis of PDEs (math.AP)MathematicsAnnali di Matematica Pura ed Applicata (1923 -)
researchProduct

Nonlinear Nonhomogeneous Robin Problems with Almost Critical and Partially Concave Reaction

2020

We consider a nonlinear Robin problem driven by a nonhomogeneous differential operator, with reaction which exhibits the competition of two Caratheodory terms. One is parametric, $$(p-1)$$-sublinear with a partially concave nonlinearity near zero. The other is $$(p-1)$$-superlinear and has almost critical growth. Exploiting the special geometry of the problem, we prove a bifurcation-type result, describing the changes in the set of positive solutions as the parameter $$\lambda >0$$ varies.

Competition phenomenacompetition phenomenanonlinear maximum principleAlmost critical growthLambda01 natural sciencesSet (abstract data type)symbols.namesakeMathematics - Analysis of PDEsSettore MAT/05 - Analisi Matematica0103 physical sciencesFOS: Mathematics0101 mathematicsbifurcation-type resultMathematicsParametric statisticsNonlinear regularity35J20 35J60010102 general mathematicsMathematical analysisZero (complex analysis)udc:517.956.2Differential operatorBifurcation-type resultalmost critical growthNonlinear systemDifferential geometryFourier analysissymbolsnonlinear regularity010307 mathematical physicsGeometry and TopologyNonlinear maximum principleStrong comparison principlestrong comparison principleAnalysis of PDEs (math.AP)
researchProduct

Asymptotic behaviors of solutions to quasilinear elliptic equations with Hardy potential

2016

Optimal estimates on asymptotic behaviors of weak solutions both at the origin and at the infinity are obtained to the following quasilinear elliptic equations −Δpu − μ |x| p |u| p−2 u + m|u| p−2 u = f(u), x ∈ RN , where 1 0 and f is a continuous function. peerReviewed

Comparison principleQuasilinear elliptic equationsHardy's inequalityAsymptotic behaviors
researchProduct

Lower semicontinuity of weak supersolutions to the porous medium equation

2013

Weak supersolutions to the porous medium equation are defined by means of smooth test functions under an integral sign. We show that nonnegative weak supersolutions become lower semicontinuous after redefinition on a set of measure zero. This shows that weak supersolutions belong to a class of supersolutions defined by a comparison principle.

Degenerate diffusion35K55 31C45Applied MathematicsGeneral MathematicsMathematical analysista111Mathematics::Analysis of PDEscomparison principlelower semicontinuitysupersolutionsMathematics - Analysis of PDEsporous medium equationFOS: MathematicsPorous mediumdegenerate diffusionSign (mathematics)MathematicsAnalysis of PDEs (math.AP)
researchProduct

Nonlinear Nonhomogeneous Elliptic Problems

2019

We consider nonlinear elliptic equations driven by a nonhomogeneous differential operator plus an indefinite potential. The boundary condition is either Dirichlet or Robin (including as a special case the Neumann problem). First we present the corresponding regularity theory (up to the boundary). Then we develop the nonlinear maximum principle and present some important nonlinear strong comparison principles. Subsequently we see how these results together with variational methods, truncation and perturbation techniques, and Morse theory (critical groups) can be used to analyze different classes of elliptic equations. Special attention is given to (p, 2)-equations (these are equations driven…

Strong comparison principles(p 2)-equationsMultiplicity theoremsNodal solutionsDifferential operatorDirichlet distributionNonlinear systemsymbols.namesakeMaximum principleSettore MAT/05 - Analisi MatematicaNeumann boundary conditionsymbolsApplied mathematicsBoundary value problemNonlinear maximum principleLaplace operatorNonlinear regularityMorse theoryMathematics
researchProduct

A Remark on an Overdetermined Problem in Riemannian Geometry

2016

Let (M, g) be a Riemannian manifold with a distinguished point O and assume that the geodesic distance d from O is an isoparametric function. Let \(\varOmega \subset M\) be a bounded domain, with \(O \in \varOmega \), and consider the problem \(\varDelta _p u = -1\ \mathrm{in}\ \varOmega \) with \(u=0\ \mathrm{on}\ \partial \varOmega \), where \(\varDelta _p\) is the p-Laplacian of g. We prove that if the normal derivative \(\partial _{\nu }u\) of u along the boundary of \(\varOmega \) is a function of d satisfying suitable conditions, then \(\varOmega \) must be a geodesic ball. In particular, our result applies to open balls of \(\mathbb {R}^n\) equipped with a rotationally symmetric metr…

PhysicsIsoparametric functionComparison principleGeodesic010102 general mathematicsRotationally symmetric spacesRiemannian manifoldRiemannian geometry01 natural sciencesRotationally symmetric spaceCombinatoricsOverdetermined systemsymbols.namesakeBounded function0103 physical sciencessymbolsComparison principle; Isoparametric functions; Overdetermined PDE; Riemannian Geometry; Rotationally symmetric spaces; Mathematics (all)Isoparametric functionsMathematics (all)Overdetermined PDEMathematics::Differential Geometry010307 mathematical physics0101 mathematicsRiemannian Geometry
researchProduct

Nonlinear diffusion in transparent media: the resolvent equation

2017

Abstract We consider the partial differential equation u - f = div ⁡ ( u m ⁢ ∇ ⁡ u | ∇ ⁡ u | ) u-f=\operatornamewithlimits{div}\biggl{(}u^{m}\frac{\nabla u}{|\nabla u|}% \biggr{)} with f nonnegative and bounded and m ∈ ℝ {m\in\mathbb{R}} . We prove existence and uniqueness of solutions for both the Dirichlet problem (with bounded and nonnegative boundary datum) and the homogeneous Neumann problem. Solutions, which a priori belong to a space of truncated bounded variation functions, are shown to have zero jump part with respect to the ℋ N - 1 {{\mathcal{H}}^{N-1}} -Hausdorff measure. Results and proofs extend to more general nonlinearities.

Dirichlet problemPure mathematicsTotal variation; transparent media; linear growth Lagrangian; comparison principle; Dirichlet problems; Neumann problems35J25 35J60 35B51 35B99Applied Mathematics010102 general mathematicsMathematics::Analysis of PDEsBoundary (topology)01 natural sciences010101 applied mathematicsMathematics - Analysis of PDEsBounded functionBounded variationFOS: MathematicsNeumann boundary conditionUniquenessNabla symbol0101 mathematicsAnalysisAnalysis of PDEs (math.AP)ResolventMathematics
researchProduct